A Rheological Study of Biodegradable Injectable PEGMC/HA Composite Scaffolds.

نویسندگان

  • Yang Jiao
  • Dipendra Gyawali
  • Joseph M Stark
  • Pinar Akcora
  • Parvathi Nair
  • Richard T Tran
  • Jian Yang
چکیده

Injectable biodegradable hydrogels, which can be delivered in a minimally invasive manner and formed in situ, have found a number of applications in pharmaceutical and biomedical applications, such as drug delivery and tissue engineering. We have recently developed an in situ crosslinkable citric acid-based biodegradable poly (ethylene glycol) maleate citrate (PEGMC)/hydroxyapatite (HA) composite, which shows promise for use in bone tissue engineering. In this study, the mechanical properties of the PEGMC/HA composites were studied in dynamic linear rheology experiments. Critical parameters such as monomer ratio, crosslinker, initiator, and HA concentrations were varied to reveal their effect on the extent of crosslinking as they control the mechanical properties of the resultant gels. The rheological studies, for the first time, allowed us investigating the physical interactions between HA and citric acid-based PEGMC. Understanding the viscoelastic properties of the injectable gel composites is crucial in formulating suitable injectable PEGMC/HA scaffolds for bone tissue engineering, and should also promote the other biomedical applications based on citric acid-based biodegradable polymers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Citrate-based Biodegradable Injectable hydrogel Composites for Orthopedic Applications.

Previous studies have confirmed that natural bone apatite crystals are bound with citrate-rich molecules. Citrates on apatite crystals impact bone development and its load-bearing function. However, such understanding has never been translated into bone biomaterials design. Herein, a first citrate-based injectable composite material for orthopedic applications is developed based on our recently...

متن کامل

Citric acid-derived in situ crosslinkable biodegradable polymers for cell delivery.

Herein, we report a first citric acid (CA)-derived in situ crosslinkable biodegradable polymer, poly(ethylene glycol) maleate citrate (PEGMC). The synthesis of PEGMC could be carried out via a one-pot polycondensation reaction without using organic solvents or catalysts. PEGMC could be in situ crosslinked into elastomeric PPEGMC hydrogels. The performance of hydrogels in terms of swelling, degr...

متن کامل

Fabrication of Porous Hydroxyapatite-Gelatin Scaffolds Crosslinked by Glutaraldehyde for Bone Tissue Engineering

In this study, to mimic the mineral and organic components of natural bone, hydroxyapatite[HA] and gelatin[GEL] composite scaffolds were prepared using the solvent-casting method combined with a freeze drying process. Glutaraldehyde[GA] was used as a cross linking agent and sodium bisulfite was used as an excess GA discharger. Using this technique, it is possible to produce scaffolds with mecha...

متن کامل

Fabrication of Porous Hydroxyapatite-Gelatin Composite Scaffolds for Bone Tissue Engineering

Background: engineering new bone tissue with cells and a synthetic extracellular matrix represents a new approach for the regeneration of mineralized tissues compared with the transplantation of bone (autografts or allografts). Methods: in this study, to mimic the mineral and organic component of natural bone, hydroxapatite (HA) and gelatin (GEL) composite scaffolds were prepared. The raw mater...

متن کامل

Innovative biodegradable poly(L-lactide)/collagen/hydroxyapatite composite fibrous scaffolds promote osteoblastic proliferation and differentiation

The development of an artificial bone graft which can promote the regeneration of fractures or diseased bones is currently the most challenging aspect in bone tissue engineering. To achieve the purpose of promoting bone proliferation and differentiation, the artificial graft needs have a similar structure and composition of extracellular matrix. One-step electrospinning method of biocomposite n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Soft matter

دوره 8 5  شماره 

صفحات  -

تاریخ انتشار 2012